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The bual and laub operations are defined and shown to be a useful means of 
analysing and coordinating previous descriptions ofpolyhexes.  Some implications 
of  a polyhex having a hole are explored. The position of such molecules in the 
Dias periodic table is argued. Formulae for moments of  the Hfickel energy in 
terms of graphical invariants are derived. The change in 7r-electron energy when 
a hole is formed is calculated for some molecules. 
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I. Introduction 

As the size of  a polycyclic hydrocarbon molecule increases so it becomes capable 
of  exhibiting greater complexity. Since the number  of  isomers also increases it 
becomes necessary to devise methods of characterizing these molecules in a 
meaningful way. The periodic table of Dias [1] is one very helpful device for 
this purpose. He has also shown [2] that only a small fraction of the possible 
isomers has ever been synthesised. This suggests that theoretical methods of 
distinguishing isomers and of suggesting which molecules would be of particular 
interest to prepare would be important. Even Hiickel theory can serve for this 
purpose. 

Since its introduction in 1968 by Balaban and Harary [3] (but see also Smith 
[4]) the concept of  the characteristic graph has been used as a means of describing 
large polycylic hydrocarbons. For further references see the recent review by 
Balaban [5]. The term is cumbersome and other authors have called it the dual 

* Dedicated to Professor J. Kouteck~) on the occasion of his 65th birthday 



426 G . G .  Hal l  

or the dualist graph. The author has argued 1 in favour of the term bual [6] which 
is distinctive and meaningful. Section 2 of this paper enlarges the concept of the 
bual to make it a more useful tool of analysis and codification. 

The idea of a conjugated hydrocarbon molecule containing a hole seems to be 
due to McWeeny [7] but the first synthesis, of Kekulene, was by Diederich and 
Staab [8] 27 years later. There has been little discussion of the properties to be 
expected of these molecules although some interesting comments on the metal 
complexes formed when an inner CH is replaced by N have been made by 
Balaban [5]. In particular most theoretical discussion of polycyclic hydrocarbons 
has ignored the possibility of holes. Many formulae need to be amended to allow 
for this and Sect. 4 and 5 give some examples. Before undertaking the preparation 
of molecules with holes it will be of importance to know what novel properties 
are to be expected. Sections 6 begins this more general discussion by considering 
the loss of 7r-electron energy when a hole is created. 

2. Bual and laub 

It is convenient to begin by defining rather carefully a certain class P of polycyclic 
molecule (P for polyhex) and restrict most of the discussion to this class. A 
member M of P will be a flat conjugated hydrocarbon molecule or radical such 

that: 

(a) the C framework of M consists of connected regular hexagonal rings of the 

same size; 
(b) every CC bond is an edge of at least one hexagon; 
(c) hexagons are connected only by sharing edges. 

The condition (b) excludes molecules with polyene side chains and (c) excludes 
bridges (cut edges) such as the central bond in biphenyl. The restriction to flat 
molecules and to regular hexagons is intended to emphasize that this is a 
theoretical model describing the ~r-electron system. Before comparisons can be 
made with experimental results the effects of overcrowding and of bond length 
differences need to be considered. For some of these molecules these effects are 
very significant. A discussion of "flat" in this connection has been given by Elk 

[9]. 

When a graph, G, consists of regular hexagons of the same size its bual is defined 
by the following construction. A vertex of the bual B(G) is placed at the centre 
of every hexagon of G and an edge of B connects vertices whose hexagons share 

1 The a rgumen t s  aga ins t  these  terms are: (1) The bual differs f rom the dua l  in ignor ing  the outs ide  
region.  (2) The bual has a geomet r i c  mean ing  as well  as a g raph ica l  one. Its angles  are essent ia l  for 

its use in coun t ing  isomers.  (3) Somet imes  bo th  concepts  are needed.  Hav ing  two te rms  makes  such 
a d i scuss ion  m u c h  eas ier  to unde r s t and .  Bual can be cons ide red  as a bas ta rd  dual to acknowledge  

its or ig in  bu t  emphas i s e  its d is t inctness .  I t  is, of  course,  the  n a m e  of  a sweet  wine  
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a common edge. The edge of  B bisects this edge of G orthogonally. Thus the 
bual is partly a geometric concept and partly a graph theoretic one. This definition 
can be generalized to square graphs G by replacing hexagon by square throughout. 
Below it is applied to triangular graphs with equilateral triangle replacing hexagon. 
It is clear from this that every benzenoid molecule has a unique bual but a bridge 
in M will lead to isolated vertices in B and polyene sections of  M will be ignored. 
The condition, that rings should be connected but only by sharing edges, in the 
definition of  P ensures that the bual B(M), for M in P, will have no isolated 
vertex and that B(M) will be a connected graph. 

A molecule of  class P will have a hole when there are at least two CH bonds 
which are not on the outside of  the molecule. The shape of the hole is limited 
by the definition of P to being a closed polygon formed from hexagonal sections. 
This means that its boundary  will be the same as the boundary of some molecule 
also in P and this gives a convenient label for the hole. The number  of  holes in 
the molecules will be called the genus of the molecule. Balaban and Harary [3] 
have used the term coronafusenes for molecules with holes. In forming the bual 
of a molecule with a hole, the hole will not be a hexagon and so will not have 
a vertex. I f  follows from the definition of P that the molecular hole of  M will 
be surrounded by complete hexagons so the corresponding boundary of B(M) 
will be continuous and will outline the same holes, i.e. the genus of B(M) will 
be the same as that of  M. The genus of M will be denoted by g(M). In his paper  
Dias [1] denoted it as c. 

From any given bual B a unique molecular graph can be constructued by placing 
a regular hexagon around every vertex of B so that its edges bisect orthogonally 
the edges of  B joined to that vertex and coincide with the edges of  the hexagons 
centred on connecting vertices. For M in P this operation will reproduce the 
original M from B(M). Since this is the reverse of  the bual operation it can be 
called the laub L(B) of the bual B. For a benzenoid molecule not in P there is 
still a bua! but, if it contains a bridge, B will have several disconnected parts 
and its laub cannot reproduce the original molecule since bonds not in a hexagon 
are not recreated. L has no prescription for relating disconnected portions of  B. 
Similarly polyene side chains are not represented in the bual and cannot be 
produced by the laub. The significance of the class of  polyhexes P is that, since 
L(B(M)) = M, there is a 1:1 relation between M and B(M). This relation is 
essential to the use that various authors have made of the bual as a means to 
enumerate these hydrocarbons. 

The bual B(M) will have vertices and edges and these may form rings. I f  so, 
these will be part of  the equilateral triangular lattice, which is the dual of  the 
original hexagonal lattice. The bual operation can be applied in turn to B(M) 
with the triangles replacing the hexagons. In every triangle a vertex of the dibual 
is placed and connecting edges bisect shared edges of  the triangles. The dibual 
is then part of the dual of  the triangular lartice, which is the original hexagonal 
lattice. For the graphical dual, the repetition of the dual operation must bring 
back the original exactly. This is the reason for the name dual. In fact the dibual 
will be contained in the original molecular graph. Since the bual has no vertex 
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outside the molecule and so no edges crossing the molecular boundary its dibual 
has the boundary stripped off leaving what Dias calls the excised internal structure 
[10] of  the molecule. Thus, by subtraction, the dibual also gives a rigorous 
definition of the boundary.  Since the bual has fewer vertices its repeated operation 
will lead to a vanishing result. When m is the smallest integer for which B " (M)  = 0 
then m can be called the level of  the molecule M. The catacondensed molecules 
are conveniently defined as molecules in P with level 2, i.e. vanishing dibuals. 
Because M is in P, B(M) will be a connected graph but, in general, B2(M) will 
not. It may also have polyene portions either as side chains or bridges. I f  M 
contains polyacene "side chains" or "bridges" then the bual has linear sections 
which are lost in the dibual. Many molecules may share the same dibual. 

The laub operation can also be repeated. The dilaub of M, L2(M), is a graph 
with extra hexagonal rings added to every bond on the boundary of M. It 
represents a growth process. For the reasons above, the dilaub will not generally 
reproduce M from B2(M). It will produce a part  of M with the less rounded 
parts removed. It could also be called the circum operation since a molecule such 
as circumnaphthalene (ovalene) is constructured from naphthalene in this way. 
Since L2(M) may fill up a hole in M the genus of L2(M) is not generally equal 
to that of  M. 

There is a useful analogy between these operations and the operations of differenti- 
ation and integration. The repeated bual loses more and more of the original 
graph just as repeated differentiation loses more and more of a polynomial 
function. To recover the polynomial  requires constants of integration to be added 
at each integration. The taub would generally require analogous "constants of  
integration" to become the inverse operation to the bual. For the class P the 
inverse relation of B = B(M) and M = L(B) is rather special. 

3. The Dias periodic table 

Dias [1] has constructed his periodic table as a means of organizing the polyhexes 
into useful groups. Isomers are classed together and the chemical formula deter- 
mines the group. For a molecule with fomula CnHh he defines its column number  
ds in the table by 

d, = (3h - 1 4 -  n)/2 (1) 

and its row number  by Nit where 

N~c=n-2h+6. (2) 

The first row in the table consists of the catacondensed molecules. In subsequent 
rows the molecule most to the left is purely pericondensed. Properties relating 
molecules in the same row or the same column have been discussed. 

The significance of this table is made more apparent  by using the bual. The 
number, r(M), of benzene rings in the molecule M, i.e. the number  of  vertices 
in the bual, is an obvious variable which can be deduced from the graph easily. 
The number  of triangles in the bual, R(B), is also readily deduced from the 
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graph. These two variables give another interpretation of the table since R is an 
alternative definition of one of Dias'  variables and the other is simply related to 
it and r: 

g l c = R , d , = r - R - 2 .  (3) 

Thus the top row has R = 0 and its columns, moving to the right, correspond to 
increasing numbers of  benzene rings. The triangles in the bual can point up or 
down and it is readily shown that, for M to be a molecule rather than a radical, 
the number  up must match the number  down. Thus the second row of  the table 
has R = 2. The later rows have R, the number  of  triangles, increasing by 2 each 
time. The buals of the molecules along a row have the same fixed number  of  
triangles (R)  but add a vertex and an edge for every column. The isomers 
correspond to the various ways of doing this. 

Unfortunately, these formulae assume that the molecule has no holes. Molecules 
with holes can be brought into the table in various ways. They could be classed 
according to their chemical formula but this would bring together molecules with 
different chemical behaviour and some of the advantage of the table would be 
lost. The table could be made three dimensional with the genus as the new 
variable but this seems unnecessary. It seems more logical to class them with 
other molecules having the same number  of  rings i.e. r and R. I f  the molecule 
M = C, Hh has N(M) edges (CC bonds) and genus g(M) then the Euler relation 
between these is 

r + g = N - n + l .  (4) 

This equation means that if N, n and r are taken as variables then g is not needed 
explicitly. Since every C is connected to three atoms and every edge (CC bond) 
connects two C and there are h CH bonds we have 

3n = 2 N + h  (5) 

so that, in terms of the formula and g, the number  of rings is 

r = ( n - h ) / 2 + l - g .  (6) 

Similarly, the bual has r vertices, R triangles and E edges so its Euler equation 
gives 

R + g = E - r + l .  (7) 

An edge of B bisects an internal edge of M so (E + N)  counts the internal edges 
twice and the external edges once. Since hexagons have six edges this must add 
to six times the number  of  hexagons 

i.e. 

E+N=6r .  

With these equations the number  of  triangles is 

R = n - 2 h + 6 ( 1 - g )  

(8) 

(9) 
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so that Dias '  relations (1) and (2) (but see also [1]) are generalized to 

ds = ( 3 h - n ) / 2 - 7 + 5 g ,  N,c = n - 2 h  +6(1  - g ) .  (10) 

Thus the variable g, or  the equivalent use o f  N, n and r, is needed for  a more 
complete classification. 

4. Holes 

Almost  all discussions o fbenzeno id  hydrocarbons  have assumed that  the molecule 
has only one boundary  - on  the outside o f  the molecule. The nature o f  the 
boundary  o f  a hole now needs to be investigated. 

The interior boundary  o f  a molecule has some properties which are quite different 
f rom those o f  the outside boundary .  For  example on the outer  bounda ry  the 
numbers  o f  C atoms with degree two, v2,2 and of  degree three, v3, satisfy the 
relation (see Sachs [10] for  a geometric p roo f  using the shape of  the polygon)  

V2-- V3= 6. (11) 

For  each inner bounda ry  the atoms satisfy 

v3 - v2 = 6. (12) 

The p roo f  is exactly the same. The difference arises because the angle of  7r/3 
inside the po lygon  is found  at a (2) a tom on the outside boundary  and at a (3) 
a tom on the inside bounda ry  and there is a similar interchange for  the - ~ - / 3  
angle. This is sufficient to show that holes can introduce new features into 
molecules.  In  terms of  g(M) the correct generalization o f  Sachs'  equat ion is: 

v3 - v2 = 6 ( g ( M )  - 1), (13) 

where vz and v3 now refer to the whole molecular  boundary .  

5. Graphical invariants 

In  a recent paper  [12] it has been shown that  some moments  o f  the energy in 
the Hiickel theory,  i.e. 

/z, = tr An, (14) 

where A is the Hiickel matrix, can be convenient ly expressed in terms of  a limited 
number  o f  graphical invariants e.g. /z2 = 2N. The simplest invariants o f  M are 
n(M), N ( M )  and r(M) but others are required for  higher moments.  The next 
simplest is the number  o f  bays b(M), which is defined as the number  o f  (3, 3) 
bonds  on the boundary  o f  M (Note  that this definition is different f rom that 
given by Balaban [5]). This definition will now be extended to include all (3, 3) 
bonds  in the boundar ies  inside as well as outside. 

2 It is convenient to use the notation (n) for a C atom of degree n, (m, n) for a CC bond with 
atoms of degree m and n at its ends and # as a number operator so that, e.g. on the boundary 
v2 = *~ (2), v3 = ~ (3) 
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The fourth moment  /z4 is calculated from A 2 by squaring each element and 
adding. The diagonal elements of  A 2 are the degrees of  the atoms and h = # (2) 
and (n - h) = # (3). The off-diagonal elements are 1 for second neighbours in M 
and 0 otherwise. As was shown in [11], the number  of  open paths of  length two 
is equal to the number  of  subtended angles at the different C atoms. Each (3) 
atom has three paths with it as centre and each (2) atom has one. Since each can 
be traversed in either order these contribute twice to/x4. Thus 

/z4 = 9(n - h) + 4h + 2(3(n - h) + h) = 15n - 9 h  = 1 8 N -  12n. (15) 

This is exactly the same relation as before [12] and suggests that these invariants 
are appropriate  ones for this purpose. In particular the genus, the rings and the 
bays are not required for this moment.  

In order to calculate the sixth moment,  the number  of  bonds in various situations 
is needed. We define c = ~ (2, 2), f =  # (2, 3) and l = 4~ (3, 3). Since the total 
number  of  bonds is N then 

N =  l + c + f  (16) 

The (2) atoms have two connecting CC bonds and these must be either (2, 2) or 
(2, 3) so, to agree with the number  counted by c and f, 

2h = 2 c + f  (17) 

Equations (16) and (17) determine c and f in terms of the other variables 

c = 2 h + l - N ,  f = 2 N - 2 1 - 2 h .  (18) 

From the discussion above, the number  of  internal (3, 3) bonds equals E, the 
number  of  edges in B, since each bisects the other. The external (3, 3) bonds are 
the bays. So the variable l is the sum of these variables 

l= E + b = 6 r - N + b .  (19) 

In [12] it was shown that it was better to select 1 as the basic variable instead of 
b since this extended the scope of the equations. For polyhexes either b or 1 can 
be used and b is more readily derived from the graph of M. 

The calculation of/~6 now proceeds by using the matrix B which is defined [13] 
by 

A =  B r  (20) 

since the polyhexes are alternant. The trace becomes 

/*6 = 2 tr (BBrB) 2 (21) 

so every element of  the product  is squared and summed. The elements are 
classified in terms of the elements of B. Each of the (3, 3) bonds has an element 
of  5, each (2, 3) has 4 and each (2, 2) has 3. Elements with 2 represent the two 
paths of  length three around the hexagons and each hexagon has three. Elements 
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II 

Fig. 1. Polyhexes and holes. Buals shown dotted 

of 1 occur across each bay and also as zig-zag paths whose central bonds are 
(3, 3), which have two, and (2, 3), which have one. Thus 

/ z 6 / 2  = 25/+ 16f+  9c + 4(3r) + (b + 2 / + f )  

= 2 5 ( / ) + 1 6 ( 2 N - 2 1 - 2 h ) + 9 ( 2 h + l -  N ) +  12r 

+ ( b +  2 1 + ( 2 N - 2 1 - 2 h ) )  

= 5 8 N - 4 8 n + 3 1 + 6 r  

= 5 5 N - 4 8 n + 2 4 r + 3 b .  (22) 

This has exactly the same form as before [12] and this justifies the choice of  
variable. The meaning has, however, been more extended. Although the genus 
does not appear  it is involved in r, N and n through Eq. (4). By keeping this 
form the result is homogeneous in the variables whereas using g would introduce 
constants into the equations. 

6. The formation of  holes 

As a contribution to the systematic study of holes in large polyhex, some calcula- 
tions have been made, using Hiickel theory, on the change in ~--electon energies 
when a hole is formed. Since the cr-electron energies are also changed, these are 
not expected to reflect experimental energies of  formation. They are merely 
indications about how the new structure modifies the molecule. 

Figure 1 shows two molecules with holes. I has a hole whose boundary is that 
of  naphthalene. This is the simplest molecule with a hole since it has only one 
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Fig. 2. Circum-perylene C5oH~8 (III). Bual shown dotted 

~ tAT - _ 

\ 

III 

missing bond .  It shou ld  be no ted  that  any  molecu le  with a c a t a c onde nse d  hole  
will  have in terna l  C H  b o n d s  which  interfere  with each o ther  s t rongly  and  must  
d is tor t  the structure.  I I  has  a hole  like the  phena l eny l  rad ica l  and  has a missing 
C a tom as well  as three  miss ing CC bonds .  Since these are re la t ive ly  small  
molecu les  and  may  not  give typ ica l  results,  a large molecu le  I I I  (Fig. 2) has  also 
been  cons ide red  and  holes  o f  var ious  sizes and  shapes  fo rmed  in it. F igure  3 
gives the buals of  these  modi f i ed  molecules .  Fo r  example ,  A has one naph tha l ene  
hole  while  B has two and  the energy to create  these  was found.  Table  1 shows 
the ca lcu la ted  results.  The numbers  are in units  of/3.  

Table  1 suggests  that  the  ~r-electron cost  o f  removing  one b o n d  f rom a molecule  
is near ly  cons tan t  and  requi res  0.64. Removing  one C with its three  b o n d s  is 
more  expens ive  and  in the  range  2.4-2.8. Removing  two b o n d s  to create  a 
p h e n a n t h r e n e  hole  costs  more  than  two i so la ted  naph tha l ene  holes  and  the 
an th racene  hole  is even more  expensive.  On the o ther  hand,  as the H O M O  energy 
shows,  the  an th racene  hole  in c i r cumpery lene  leads  to a ra ther  react ive molecu le  
with an excep t iona l ly  low energy gap.  

Table  1. HMO energy differences (units of 13) 

Molecule Hole shape Loss of energy Total eHOMO 
r 

I 
II 
III 

C32H16 Naphthalene 0.6397 45.8578 0.4016 
C42H2o Phenalenyl 2.4110 59.7192 0.2984 a 

A C~0H20 1st naphth. 0.6411 (A-Ill) 73.0963 0.3436 
B C5oH22 2nd naphth. 0.6310 (B-A) 72.4623 0.3912 
C C49H21 Phenalenyl 2.7630 (C-Ill) 70.9744 0.4229 a 
D C48H24 Perylene 4.9150 (D-III) 68.8223 0.4141 
E CsoH2z Phenanthrene 1.2990 (E-Ill) 72.4384 0.2299 
F C5oH22 Anthracene 1.5480 (F-III) 72.1894 0.1064 

a Next to the non-bonding orbital 
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Fig. 3. Buals of circum-petylene with 
various shaped holes. The dibual shown 
dotted 

A p p e n d i x  

The formlae derived in Sect. 5 enable us to give an estimate of  the spectral radius of  the matrix A 
in terms of graphical invariants. The spectral radius has been discussed recently by Cioslowski [14]. 
This radius is also the magni tude of the largest eigenvalue of A. An estimate of  this eigenvalue was 
given earlier [15] as 

\ ij b o n d e d  

where d~ is the degree of atom i. These sums can be evaluated using the relations above 

S = 4 h + 9 ( n - h ) = 9 n - 5 h  

= 1 0 N - 6 n ,  (24) 

W= 2(91+6f+4c) 

= 24n - 16h + 21 = 3 0 N -  24n + 12r + 2b, (25) 
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The estimate W/S shows clearly how this quantity is dominated by the short range topology of the 
molecule. Although this estimate is not  quite as accurate as that of  Cioslowski it is simpler to use 
and appreciate. This ratio was originally used as a measure of branching. It is interesting that it 
involves the number  of  rings and bays. 
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